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Alternative Method for Asymptotic Formula of Adiabatic Ratio 

Ken TAKAYAMA 
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Considerations about the motion of the Courant and Snyder 

Invariant curve [l] are presented which lead to an exact formula for 

defining the adiabaticfty of a linear harmonic oscillator, described 

in terms of the auxiliary function for the Invariant [2-51. For a 

typical example in which an oscillation frequency changes at a finite 

rate and in a finite period, an asymptotic expression of this formula 

desinated as the adiabatic ratio Is obtained by a systematic 

procedure. This systematic procedure involves a method of 

asymptotically solving the non-linear auxiliary equation. 
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1. Introduction. We shall consider a time-dependent harmonic 

oscillator described by the Hamiltonian 

i-4(x, p;t) = (I/,)[ pz + xwxz] (1) 

where a(t) is the time-varying parameter. It Is well lcnown that for 

sufficiently slow change In the parameter the action variable of 

system (1) is an approximate constant, which we desinate as an 

"adiabatic constant". The proof for adiabatic invariance of the 

"action Integral" has been given, for example, in the literature [6]. 

Unfortunately, the adiabatic theorem does not tell quantitatively how 

slow the change in the parameter must be for the adiabatic theorem to 

hold. Practically, we would expect to calculate the increase in the 

action Integral when the change in the Hamiltonian is nearly adiabatic 

and even abrupt. So far approximate methods to calculate the increase 

have been presented by several authors[7-101 and in particular applied 

to the following two oases: 

x(t)= [ wr, - (w, -uJo)ex+- s’t’,-J” 

where INC.3 is the asymptotic limit t-3+_=', and W,is the value at 

tro, 
x(t) = w,’ [ $ (m+ I) + -$ (m-1) t~nlr(oct~]2 

where n is an integer. 

These calculating methods require a finite varying ratio and an 

infinite VWYi *g period of the parameter x(t). The later 

requirement is not always compatible with real situations. In 

addition, although It is not immovable, intricacies of an initial 



?h;i;ti :)-oblem is ~lnavoidaile !~n them. 13 Ch i,s pper, a method for 

calc1:1ating the :naximum i~ncrease of the action ink.+$l-.al for the case 

adhere the par.meter changes -it the finite varying rate ;,r~:l ::I 1 f!nFte 

vwying period 13 ,7resented. In this method, an initial ph?iF! p:':~h;~,tn 

:doesn't appear inherently. 

Wn point out that the system (1) has an exact dynamical invariant 

indepandent of the change in the parameter, which ts designated as the 

"Courant and .Snyder invariant" 

I(-*, p ; t) = #pKJ { XL-t [+n-p”‘p~‘\, (2) 

where a (t) satisfies the auxiliary differential equation 

$f! ‘(3. - + pz •t hW)(CjZ = 1. (3) 

When l(t) is constant, the invariant I is exactly identical ulth the 

acti,)? v;+riable of the system (1) if we choose the initial condition 

/3(-M) = I /J-z , I;‘-“)= 0. 

For a time-va-ying Function a(t), from (Z), we know that a sequence 

of infinite phase points which have a certain constant value of 1 at 

an arbitrary time behaves as a deformable moving ellipse in the phase 

-ipace (x,p,; t) after that ttme. The for% of such a ellipse, called an 

"tnvari.~r~t curve" in the following, is uniquely determined by the 

auxiliary dlfferentlal equation (3) alone. 

We will now consider the case when the parameter h changes from 

a constant value ;;t, to another constant value a1 in a finite period. 

I': 1s noted that such cases often sppe;r:‘ '.,I real situatiuns. That his 
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Fig. 1 

We consider the invariant curve described in the term 

ICY, \' ; to)= 1, , to< 'cl, (6) 

with a constant I,. The quantity Io is equal to the value of the 

action variable of i"fLnite phase points which comprise the invariant 

curve, as mentioned above. So if we continue to examine the notion of 

the invariant curve at t>t,, we find the exact time-evolution of such 

a sequence of infinite points which once possessed the sane action 

variable J. This fact will give us useful informations about a change 

in the action variable. Furthermore, it may enable us to estimate the 

adiabaticity of the system (1). In fact, Symon Cl11 has derived the 

maximum and minimum change of a" action Integral, based on the similar 

idea. Here, from a geometrical point of view, we shall derive a" 

exact formula for estimating the adiabaticity, which Is equivalent to 

that of Symon. Thls is designated as the adiabatic ratio in the 

followi"g. For the case stated in the early part of this section, an 

asymptotic expression of this adiabatic ratio shall be derived 

analytfcally , by using a" asymptotic solution of the auxiliary 

equation (3). The analytical results are found to be in agreement 

with a numerical evaluation. 
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2. Motion of invariant curve and adiabatic ratio. We w 

characterize a" ellipse ok an invariant curve by txo parameters of 
. 

q , 6 which are a function of p(t) and Q (t) (See Fig.21 

Fig. 2 

If we choose the initial conditions (3(to)=l/6,, @ (t,)=O, the 

solutio" of (3) is 

p(t)= I/G, , p(t)-0 , tb ktc,JJ,. (7) 

' Therefore, before the variation of the Hamiltonian the form of the 

above ellipse remaines Iunchanged and its motion ia only parallel 

displacement along the axis of time. At t=t,, the ellipse begins to 

move, following the time-evolution of P(t) which is determined by 

Eq.(3). After the variation of the Hamiltonian,i.e.,t~t,, the 
l 

ellipse continues to move unless ( Q(t,),(3(t2)) is equal to (l/sji,,O) 

(See Fig.2). 

Now we write the phase space area surrounded by the invariant 

curve which remains constant in the region tQ It <CO, in the term 

$, c r-ILL. (8) 

In addition, we shall define S as the cross section of the outside 

envelope which the moving ellipse makes after t=tL (See Fig.3). 

Fig. 3 
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It is noted that the phase apea between the outside and inside 

envelopes is the area effectively occupied by the phase points which 

have the same action variable J at t$ t,. From Fig.3, the cross 

section S is described In the for-m 

$ = -It Mar kit> Mar ii%, t2rl1, (9) 

Then it is trivial to write k(t), g(t) in the terms of g(t), l(t) 

5 tt1 - JqGrl, , (lOa) 

(lob) 

where 

' b-k): [It (G/43 /p. 

Here we define the adiabatic ratio I- in the term 

C Max (3 t't) Ma,c d-,t+ 

(11) 

The soution of (3) with the constant h=x2is well known: 

(3(t)= mo't -I- ACoS.[zJj;,[t-t2)] +Asr‘M[f&rlt-Lg (13a) 
/ 

f&l = ZtcL 5 - A 5r'h c2Jj;, (t-C~~3+810s~~~[t-t~~~('3b) 
/ 

where A and B satisfy the boundary condition 

pltz) = JAl-tz -t A, (14a) 

(i ltx) = 2d-x I3 (l'+b) 

From (13a) and (13b), it is trivial to obtain the maximum values of 

B (t) and 'b(t). We write these values in the terms 
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Ma+'lt) = j=B'i t /m 
, 

(15a) 

naxyk) = 1 / ( jxL -JTGG). (1Sb) 

Substituting (1%) and (15b) into (121, we obtain 

(16) 

Thls agrees to the result obtained by Symon 1111, though notations of 

terms are slightly different. Replace the term of AacE by the 

auxiliary function and its time-derivative. So that (16) becomes 

t- = 
I (17) 

where 

(18) 

According to Eq. (181, it is identified that only the values of the 

auxiliary Function and its time-derivative at t=t, are required in 

order to obtain an exact expression of the adiabatic ratio for a 

certain given change in the parameter as seen in Fig. 1. In the next 

section, we shall discuss how these values can be evaluated. 

3. Approximate Calculation Method of Adiabatic Ratio We shall 

consider the cosine-like change of the coefficient which often appears 

in beam dynamics of accelerators and storage rings, and other fields 

of physics: 

2 71 ItI = I $r q+ w, -c (w,- w,j (OS- ; (t-t!q 
I 

(19) 

tt-5 t I r2 



where 1, z&,;, h&&nd T(=t,-t,) is a finite transitIon time. 

Introduce the parameter defined as a ratio of the tranSitSOn time to 

the initial oscillation pertod 

/#.A = -r/T, CT, = .dch)~ 

and,a decrement ratio of the oscillation frequency, that is, 

WA 
c-z I-- 

LoI - 

Furthemore, making a change of time-scale 

,g = n Ct-ta)lT, 

(202.1 

(ZOb) 

(ZOC) 

we have the normalized equation of motion 

0 
e> -t P = ( -L- c$ -+ 6-1tose y3L = 0 (21) 

Here, for a given E , the parameter /u can be regarded as an 

adiabatic parameter, since largeness 
P 

is a measure of the slowness 

of the coefficient hit) . Then, introducing the root square function 

of the auxiliary function 

we can reduce the auxiliary equation (3) to the following non-linear 

equation: 
. . . 

+I P = -& , ( 
d 

P + 
‘;- ;i- 1 (22) 

with the initial condition f(O) =[l+&nd t;(D)= 0, 

where 

-fl= /u’(2-Cl” (23a) 



(23b) 

TO solve Eq.(22), let us determine a straightfoward asymptotic 

expansion for +-' . Thus we assume that 

7(!3 )= P,(Q) t -+ p,(g) ‘t + P>kJJ + - - - (24) 

Substituting (24) into 

Y3 c '6 t -kfw]-110, (25) 

-1 
and equating coefficients of equal powers of % to zero lead to 

R {VW poq - 1'0, 

?,'I i;, t&Jw-J t 3+meq =o, 

(26a) 

(26b) 

P> LP’, t jwp,] t 3?,?, L ‘F;,+wJt ~fwD2Cf:t f?fJ=cw) / 

Here the equal or. less terms than the 0-th power of -8 
-1 

are included 

in (26~3). The solution of this zeroth-order equation is 

Further, we can determine the higher approximations by simple 

algebraic calculations. Substituing (27a) into (26b) and solving for 

P, ' we have 

(27b) . 

Substituting (27a) and (27b) into (26~) and solving for e, , we have 
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?1= - 

p/'p, +3P,‘&+64fy 
(27~) 

44 PCJ 

Therefore 

y= $2’45 -\I4 
' *-"4 (-.p3'+ i2 + f-'/Q y)+ O(a?h)~2s: 

+Ti 

Though the initial conditions of (22) require 

f,(o)-- Pzrto') = - - - - - = 0 ) 

+, (0) = i,(D) = - - - - - =o . 

lmfortmataly, ?, does not at least satisfy them because of 

.&) ; _ lSe ( - 5 r;Lt@ -t ;e COS’fJ + w)+ 0 at “=? 
As, however, only the values of p , e at 8 =n are required, we will 

Ignore this fact. FOP the fast convergency of Eq.(28), we require the 

following conditions: 

1 
+ cc I or p >> - 

2-e , 
(29a) 

(29b) 

For a value of p satisfying the condition (29a), Eq.(28) is a good 

asymptotic expression, provided that a given value of E is smaller 

than unity. Now, using the following terms: 

$14 - - I+ ( 2 - E Y’/; 

f(K) = 2’ c=Y, Jbr~=O, 

‘J(*, = - 2=;2+;J, 

we obtain the asymptotic values of !?'(n) and P(x) 

p(x) = 2T’i2 (1 -~i’lj*-i12 t -I+ -?X 
2 c Cl- &) -“p-i+1 0 p )( 30a) 

I 
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i,(lc, =o , (30b) 

Accordingly, the asymptotic values of the auxiliary function and its 

time-derivative for become 

pm, = 2?(I-~)-'p-' + 2-6 E (,-$A-3 + 0 (/a, (31a) 

$0 = 0 c p-5) (31b) 

Finally, substituting (31a) and (31b) into (17) or (181, we Can Writs 

the adiabatic ratio in the fora of an asymptotic expansion of the 

adiabatic parameter : 

k I+ + O(fi4) (32) = 

For two examples of E =1/z and 213 which mean oscillation 

frequency reductions of a factor of 2 and 3, the adiabatic ratio is 

plotted as a function of the adiabatic parameter /.L in Fig.4a and 4b. 

Fig.4.a and 4b 

Here, calculations are performed to first order in Eq.(32). In 

addition, numerically computed values are given in the same figures. 

They are obtained by substituting the values of p(x) and $IT ) 

calculated numerically into the exact formula (18). Both results for 

each case agree well as /u becomes larger. 

The present systematic procedure to calculate the values of the 

auxiliary function and its time-derivative at the just time when the 

parameter h(t)completes its changing can be applied to other cases 
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that this parameter smoothly changes in a finite period. Further 

extensive applications of the present method and a problem connected 

with the convergency of Eq.(28) not discussed in detail will be given 

elsewhere. 

The author would like to thank Mr. A. Ando and Dr. A. Ruggiero 

for useful discussions in the early stage of the present work. He is 

also grateful to Dr. J. Griffin for valuable comments on the 

manuscript. After the formula Eq.(16) for the adiabatic ratio was 

obtained, Dr. F. Mills has brought Symon's work to his attention. 
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Figure Captions 

Fig. 1 Time-varying coefficient 71(t) 

Fig.2 Time-evolution of invariant curve 

characteristic parameters f and s . 

Fig.3 Outside envelope and inside envelope of moving invariant curve 

F1g.k Adiabatic ratio versus the adiabatic parameter p for 6 =1/Z. 

The dot8 are numerically computed values and the line is the 

theoretical prediction. 

Fig.4b Adiabatic ratio vemus the adiabatic parameter / for G q 2/3. 

The dots are numerically computed values and the line is the 

theoretical prediction. 
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